2 ПРАКТИЧЕСКАЯ РАБОТА «КИНЕМАТИЧЕСКИЙ АНАЛИЗ ПЛОСКИХ РЫЧАЖНЫХ МЕХАНИЗМОВ»

2.1 Цель работы

Углубление и закрепление теоретических знаний, развитие умений и практических навыков студентов в области кинематического анализа плоских рычажных механизмов. Овладение практикой кинематического исследования механизмов графическими методами.

2.2 Краткие теоретические сведения

Кинематическое исследование рычажных механизмов включает определение положений, скоростей и ускорений звеньев и тех характерных точек (центров масс, кинематических пар и других) механизма, для которых необходимо количественное описание движения при проектировании.

Кинематический анализ выполняют аналитическими или графическими методами. Аналитические методы разнообразны, точны, но расчетные зависимости, определяющие линейные и угловые координаты, скорости и ускорения точек подвижных звеньев механизма, сложны и трудоемки в решении.

Графические методы кинематического исследования механизмов, позволяющие определить положения звеньев, скорости и ускорения точек и звеньев, получили широкое распространение. Это обусловлено быстротой, удобством и наглядностью решения прикладных вопросов проектирования. Точность графических методов достаточна для решения многих практических задач.

Графический метод, основанный на использовании планов положений, скоростей и ускорений, особенно удобен при проведении кинематического анализа плоских рычажных механизмов.

2.3 Исходные данные для расчета

Кинематическая схема рычажного механизма (Рисунок 2.1), размеры его звеньев, положение (угол φ) и угловая скорость (ω_1) начального звена механизма выбираются из таблицы 2.1 в соответствии с номером варианта, закрепленным за студентом.

Рисунок 2.1 – Плоские рычажные механизмы

Номер	Схема	arphi,	ω_1	Размеры звеньев, м					
варианта	рычажного механизма	град.	c ⁻¹	l _{OA}	l_{CD}	l_{AB} ; l_{BC} ; l_{DE}			
	MCAannisma				l_{AD}	Размеры а, b			
1		50	40	0,06	X				
2	Рисунок 2.1.а	80	50	0,08					
3		110	60	0,1	$x=0,4l_{OA}$	$a=2,2l_{OA}$;			
4	D	30	40	0,1	$l_{CD}=0,5l_{BC}$	<i>b=0,5a</i> ;			
5	Рисунок 2.1.б	60	50	0,06		1 _1 _1 _1 _2			
6		90	60	0,08		$\iota_{AB} = \iota_{BC} = \iota_{DE} = 1, 2a$			
7	D	20	40	0,06		$l_{CS_3} = 0,3l_{BC};$			
8	Рисунок 2.1,в	70	50	0,08	$l_{AD}=0,3l_{AB}$	$l_{\rm PS} = 0.4 l_{\rm AP}$			
9		120	60	0,1		· BS ₂ · · · · AB ,			
10	Duounor	50	40	0,08		$l_{DS_4} = 0,5 l_{DE}.$			
11	Рисунок 2.1,г	100	50	0,1					
12		150	60	0,05					
13	Duounor	140	35	0,1					
14	гисунок 2.1,а	170	45	0,08					
15		200	25	0,06	$x=0,5l_{OA}$	$a=2,4l_{OA}$;			
16	Duounor	120	35	0,1	$l_{CD}=0,6l_{BC}$	<i>b=0,6a</i> ;			
17	гисунок 2.1,б	150	45	0,06		$l_{AB} = l_{BC} = l_{DE} = 1.2a$			
18		0	25	0,08					
19	Duounor	170	25	0,06		$l_{CS_3} = 0,4l_{BC};$			
20	Рисунок 2.1,в	220	35	0,08	$l_{AD}=0,4l_{AB}$	$l_{BS_{2}} = 0.3 l_{AB};$			
21		270	45	0,1		во <u>у</u> / Ав/			
22	Duormon	200	25	0,08		$l_{DS_4} = 0,6 l_{DE}.$			
23	гисунок 2.1,г	250	35	0,06					
24		300	45	0,1					

Таблица 2.1 – Варианты исходных данных к работе № 2

2.4 Пример расчета

Ниже, в качестве примера, выполнено кинематическое исследование плоского рычажного механизма, изображенного на рисунке 2.2 по заданным таблицей 2.2 исходным параметрам.

Угол	Угловая	Длины звеньев, м	Положение	Координаты
φ , град.	скорость		центра масс	опор, м
	ω_1, c^{-1}		звеньев, м	
<i>45</i> ⁰	100	$l_{OA}=0,1; l_{AB}=l_{BC}=0,2;$ $l_{CD}=0,28; l_{DE}=0,35$	$l_{AS_2} = \frac{1}{3} l_{AB}$ $l_{BS_3} = \frac{1}{3} l_{BC}$ $l_{DS_4} = \frac{1}{3} l_{DE}$	$l_1 = 0, 15$ $l_2 = 0, 15$

Таблица 2.2 – Исходные данные для расчета

Рисунок 2.2 – Схема плоского рычажного механизма

Кинематический анализ выполнен графическим методом с использованием планов положений, скоростей и ускорений (Рисунок 2.3).

2.4.1 План механизма

Изображение кинематической схемы механизма, соответствующее определенному положению начального звена (угол φ), называется планом механизма.

Построение плана механизма проводим следующим образом.

2.4.1.1 Выбираем место расположения стойки начального звена механизма, затем с помощью транспортира, откладываем заданное значение угла φ , последний определяет направление кривошипа *OA* (Рисунок 2.3, а).

2.4.1.2 Произвольно задаемся чертежным размером кривошипа *OA* (например, 20...60 мм), затем определяем масштабный коэффициент длины

$$\mu_l = \frac{l_{OA}}{OA} = \frac{0.1M}{20MM} = 0.005 \frac{M}{MM}$$

и находим чертежные размеры остальных звеньев:

$$AB = BC = \frac{l_{AB}}{\mu_l} = \frac{0.2}{0.005} = 40 \text{ mm};$$

$$h_1 = h_2 = \frac{l_1}{\mu_l} = \frac{0.15}{0.005} = 30 \text{ MM},$$

аналогично

 $CD = 56 \text{ MM}; DE = 70 \text{ MM}; AS_2 = BS_3 = 13,3 \text{ MM}; DS_4 = 23,3 \text{ MM}.$

2.4.1.3 Отмечаем на чертеже положение вращательной кинематической пары *С* и проводим линию движения ползуна 5.

2.4.1.4 С помощью циркуля, начиная от точки O, методом засечек последовательно откладывая чертежные размеры всех звеньев механизма, определяют положения кинематических пар A, B, D, E и центров масс S_2 , S_3 , S_4 звеньев 2, 3 и 4 соответственно.

2.4.1.5 Прорисовав стойки, кинематические пары и все звенья, получим искомый план механизма (Рисунок 2.3, а).

2.4.2 План скоростей

Скорость точки А звена 1 по модулю равная

$$\mathcal{G}_A = \omega_1 \cdot l_{OA} = 100 \cdot 0, 1 = 10 \quad \mathcal{M} \cdot c^{-1}$$

направлена перпендикулярно кривошипу *ОА* в сторону его вращения (Рисунок 2.3). Отрезок (*Pa*), изображающий скорость \mathcal{G}_A точки *A* кривошипа и равный

$$Pa = \frac{\vartheta_A}{\mu_{,g}} = \frac{10}{0,25} = 40 \text{ MM},$$

где $\mu_g = 0.25 \frac{M \cdot c^{-1}}{MM}$ - масштабный коэффициент плана скоростей, откладываем перпендикулярно звену *OA* из произвольно выбранной точки *P* (полюс плана скоростей) (Рисунок 2.3, б).

Кинематическая пара В образована звеньями 2 и 3. Шатун 2 совершает плоскопараллельное, а коромысло 3 – вращательное движения. Скорость точки В можно определить графически, решая систему векторных уравнений:

$$\overline{\mathcal{G}}_B = \overline{\mathcal{G}}_A + \overline{\mathcal{G}}_{BA} \qquad \text{if} \qquad \overline{\mathcal{G}}_B = \overline{\mathcal{G}}_C + \overline{\mathcal{G}}_{BC} \tag{2.1}$$

Вектор относительной скорости $\overline{\mathcal{G}}_{BA}$ перпендикулярен линии *AB*, а вектор скорости $\overline{\mathcal{G}}_{BC}$ - перпендикулярен линии *BC* на плане механизма (Рисунок 2.3, а). Точка *C* принадлежит стойке, поэтому $\mathcal{G}_{C} = 0$; приравнивая правые части уравнения (2.1) получим:

$$\overline{\mathcal{G}}_A + \overline{\mathcal{G}}_{BA} = \overline{\mathcal{G}}_{BC}.$$
(2.2)

Отрезки (*ab*) и (*Pb*), на лучах, проведенных через точки *a* и *P* плана скоростей (Рисунок 2.3, б) в направлениях скоростей $\overline{\mathcal{G}}_{BA}$ и $\overline{\mathcal{G}}_{B}$ определят модули этих скоростей:

$$\mathcal{G}_{B} = \mathcal{G}_{BC} = (Pb) \cdot \mu_{\mathcal{G}} = 68 \cdot 0.25 = 17 \quad \mathcal{M} \cdot c^{-1};$$

$$\mathcal{G}_{BA} = (ab) \cdot \mu_{\mathcal{G}} = 69 \cdot 0.25 = 17.3 \quad \mathcal{M} \cdot c^{-1}.$$
(2.3)

Векторы $\overline{\mathcal{G}}_{BA}$ и $\overline{\mathcal{G}}_B$ определят величины и направления угловых скоростей звеньев 2 и 3

$$\omega_{2} = \frac{9_{BA}}{l_{AB}} = \frac{17.3}{0.20} = 86.5 \ c^{-1};$$

$$\omega_{3} = \frac{9_{BC}}{l_{BC}} = \frac{17.0}{0.20} = 85 \ c^{-1}.$$
(2.4)

Направление скорости точки D совпадает с направлением скорости точки B, так как они принадлежат одному звену, совершающему вращательное движение. Модуль скорости \mathcal{G}_D равен

$$\theta_D = \omega_3 \cdot l_{DC} = 85 \cdot 0,28 = 23,75 \quad M \cdot c^{-1}.$$

Скорость \mathcal{G}_D представлена на плане скоростей отрезком

$$Pd = \frac{9_D}{\mu_{\mathcal{B}}} = \frac{23,75}{0,25} = 95 \quad MM.$$

(Скорость \mathcal{G}_D возможно определить также с помощью теоремы подобия).

Наконец, скорость точки Е ползуна 5 определится из векторного уравнения:

$$\overline{\mathcal{P}}_E = \overline{\mathcal{P}}_D + \overline{\mathcal{P}}_{ED}, \qquad (2.5)$$

здесь $\overline{\mathcal{G}}_{ED} \perp DE$, а $\overline{\mathcal{G}}_E$ // линии *x-x*.

Через точку *d* плана скоростей проводим луч, перпендикулярный линии *DE*, а через полюс P – луч параллельный линии *x-x*, точка *e* пересечения этих лучей определит величины отрезков (*de*) и (*Pe*) и модули скоростей $\overline{\mathcal{G}}_{ED}$ и $\overline{\mathcal{G}}_{E}$:

$$\begin{aligned} \mathcal{P}_{ED} &= (de) \cdot \mu_{\mathcal{P}} = 49 \cdot 0,25 = 12,25 \quad M \cdot c^{-1}, \\ \mathcal{P}_{E} &= (Pe) \cdot \mu_{\mathcal{P}} = 95 \cdot 0,25 = 23,75 \quad M \cdot c^{-1}. \end{aligned}$$
(2.6)

Вектор $\overline{\mathcal{G}}_{ED}$ определит величину и направление угловой скорости ω_4 звена ED

$$\omega_4 = \frac{\theta_{ED}}{l_{ED}} = \frac{12,25}{0,35} = 35 \ c^{-1}.$$

Положение центров масс S_2 , S_3 и S_4 подвижных звеньев на линиях плана скоростей находятся по правилу подобия. Например, центр масс S_2 шатуна *AB* должен лежать на линии (*ab*) плана скоростей и делить отрезок (*ab*) в том же отношении, в каком точка S_2 делит отрезок *AB* шатуна 2, т.е.

$$\frac{(aS_2)}{(ab)} = \frac{l_{AS_2}}{l_{AB}}, \quad \text{откуда} \quad (aS_2) = (ab) \cdot \frac{l_{AS_2}}{l_{AB}} = 69 \cdot \frac{1}{3} = 23 \quad \text{мм};$$

Аналогично

$$(bS_3) = (bc) \cdot \frac{l_{BS_3}}{l_{BC}} = 68 \cdot \frac{1}{3} = 22,7$$
 MM;

$$(dS_4) = (de) \cdot \frac{l_{DS_4}}{l_{DE}} = 49 \cdot \frac{1}{3} = 16,3$$
 MM.

Рисунок 2.3 – Планы положений, скоростей и ускорений Отложив расчетные значения отрезков (*aS*₂), (*bS*₃), (*dS*₄) на соответствующих линиях плана скоростей, определяем модули скоростей центров масс:

$$\begin{aligned} \mathcal{G}_{S_2} &= (PS_2) \cdot \mu_{\mathcal{G}} = 39 \cdot 0,25 = 9,75 \quad M \cdot c^{-1}; \\ \mathcal{G}_{S_3} &= (PS_3) \cdot \mu_{\mathcal{G}} = 45,3 \cdot 0,25 = 11,3 \quad M \cdot c^{-1} \\ \mathcal{G}_{S_4} &= (PS_4) \cdot \mu_{\mathcal{G}} = 91 \cdot 0,25 = 22,7 \quad M \cdot c^{-1}. \end{aligned}$$

Направления скоростей \mathcal{G}_{S_2} , \mathcal{G}_{S_3} и \mathcal{G}_{S_4} определяют соответственно векторы \overline{PS}_2 , \overline{PS}_3 и \overline{PS}_4 .

Расчетные значения угловых скоростей звеньев и линейных скоростей точек, обозначенных на плане механизма (Рисунок 2.3, а), заносим в таблицу 2.3.

2.4.3 План ускорений

Кривошип OA вращается с постоянной угловой скоростью ω_1 . Следовательно ускорение точки A кривошипа формирует только ее нормальная (центростремительная) составляющая, по модулю равная

$$a_A = \omega_1^2 \cdot l_{OA} = 100^2 \cdot 0, 1 = 1000 \quad \text{m} \cdot c^{-2}$$
(2.7)

и направленная параллельно линии ОА от точки А к О.

Задавшись масштабным коэффициентом $\mu_a = 25 \frac{M \cdot c^{-2}}{MM}$ плана ускорений, откладываем из произвольной точки π (полюс плана ускорений) (Рисунок 2.3, в) отрезок (πa), параллельный кривошипу *OA* и равный

$$(\pi a) = \frac{a_A}{\mu_a} = \frac{1000}{25} = 40 \quad \text{MM}.$$

Вектор $(\overline{\pi a})$ изображает ускорение a_A на плане ускорений.

Ускорение точки В определит система двух векторных уравнений:

$$\overline{a}_{B} = \overline{a}_{A} + \overline{a}_{BA} = \overline{a}_{A} + \overline{a}_{BA}^{n} + \overline{a}_{BA}^{t}$$

$$\overline{a}_{B} = \overline{a}_{C} + \overline{a}_{BC} = \overline{a}_{BC}^{n} + \overline{a}_{BC}^{t}$$

$$(2.8)$$

Приравнивая правые части, имеем

$$\overline{a}_A + \overline{a}_{BA}^n + \overline{a}_{BA}^t = \overline{a}_{BC}^n + \overline{a}_{BC}^t$$
(2.9)

Нормальные ускорения \bar{a}_{BA}^{n} и \bar{a}_{BC}^{n} представлены на плане ускорений соответственно отрезками (ab') и $(\pi b'')$

$$(ab') = \frac{a_{BA}^n}{\mu_a} = \frac{\omega_2^2 \cdot l_{AB}}{\mu_a} = \frac{86.5^2 \cdot 0.2}{25} = 59.8 \text{ MM};$$

$$(\pi b'') = \frac{a_{BC}^n}{\mu_a} = \frac{\omega_3^2 \cdot l_{BC}}{\mu_a} = \frac{85^2 \cdot 0.2}{25} = 57.8 \text{ MM},$$

отложенными параллельно соответствующим звеньям *AB* и *BC* в направлениях от точки *B* к точке *A* и от точки *B* к точке *C* соответственно.

Модули тангенциальных ускорений \bar{a}_{BA}^{t} и \bar{a}_{BC}^{t} определяют отрезки (bb') и (bb'') прямых, проведенных нормально к звеньям АВ и ВС и проходящих через соответствующие точки b' и b'' плана ускорений

$$\overline{a}_{BA}^{t} = (bb') \cdot \mu_{a} = 32 \cdot 25 = 800 \quad M \cdot c^{-2};$$

$$\overline{a}_{BC}^{t} = (bb'') \cdot \mu_{a} = 41 \cdot 25 = 1025 \quad M \cdot c^{-2}.$$

Отрезки (*ab*) и (πb) (Рисунок 2.3, в) определят величины и направления ускорений \bar{a}_{BA} и \bar{a}_{BC} :

$$\overline{a}_{BA} = (ab) \cdot \mu_a = 68 \cdot 25 = 1700 \quad m \cdot c^{-2};$$

$$\overline{a}_{BC} = \overline{a}_B = (\pi b) \cdot \mu_a = 71 \cdot 25 = 1775 \quad m \cdot c^{-2}.$$

Точки *B*, *C* и *D* расположены на звене *3*, поэтому на основании теоремы подобия возможно определить отрезок (πd) выражающий в масштабе μ_a модуль ускорений \overline{a}_D

$$\frac{(\pi b)}{(\pi d)} = \frac{l_{BC}}{l_{CD}}$$

откуда

$$(\pi d) = (\pi b) \cdot \frac{l_{CD}}{l_{BC}} = 71 \cdot \frac{0.28}{0.2} = 99.4 \text{ MM},$$

 $\overline{a}_D = (\pi d) \cdot \mu_a = 99.4 \cdot 25 = 2485 \text{ M} \cdot c^{-2}.$

Наконец, ускорение точки *Е* ползуна возможно определить из векторного уравнения:

$$\overline{a}_E = \overline{a}_D + \overline{a}_{ED} = \overline{a}_D + \overline{a}_{ED}^n + \overline{a}_{ED}^t.$$
(2.10)

В уравнении (2.10) известны направления всех векторов ($\bar{a}_E //x - x, \ \bar{a}_{ED}^n //DE, \ \bar{a}_{ED}^t \perp DE$) и модули ускорений \bar{a}_D и \bar{a}_{ED}^n

$$a_{ED}^{n} = \omega_{4}^{2} \cdot l_{ED} = 35^{2} \cdot 0,35 = 428,75 \quad m \cdot c^{-2}.$$

Ускорение \bar{a}_{ED}^{n} на плане ускорений представлено отрезком (de'), проведенным параллельно звену *DE* и отложенным в направлении от точки *E* к точке *D* величиной

$$(de') = \frac{a_{ED}^n}{\mu_a} = \frac{428,75}{25} = 17,2$$
 MM.

В соответствии с уравнением (2.10) проводим через полюс π луч (πe) параллельный ходу ползуна (линии *x-x*), а через точку e' - луч (e'e) перпендикулярный линии *DE* шатуна 4. Отрезки (πe) и (e'e) (Рисунок 2.3, в) определят модули ускорений \bar{a}_E и \bar{a}_{ED}^t

$$\overline{a}_E = (\pi e) \cdot \mu_a = 96 \cdot 25 = 2400 \quad \text{$M \cdot c^{-2}$};$$
$$\overline{a}_{ED}^t = (ee') \cdot \mu_a = 35 \cdot 25 = 1225 \quad \text{$M \cdot c^{-2}$};$$

Центры масс S_2 , S_3 *u* S_4 расположены соответственно на линиях *AB*, *BC* и *DE* (Рисунок 2.3, а) подвижных звеньев механизма. Следовательно, точки S_2 , S_3 и S_4 плана ускорения находятся на одноименных линиях *(ab)*, *(bc)* и *(de)*. Положения точек находим по правилу подобия:

$$\frac{(aS_2)}{(ab)} = \frac{l_{AS_2}}{l_{AB}}$$

откуда

$$(aS_2) = (ab) \cdot \frac{l_{AS_2}}{l_{AB}} = 68 \cdot \frac{1}{3} = 22,7$$
 MM;

аналогично

$$(bS_3) = (bc) \cdot \frac{l_{BS_3}}{l_{BC}} = 71 \cdot \frac{1}{3} = 23,7$$
 MM;

$$(dS_4) = (de) \cdot \frac{l_{DS_4}}{l_{DE}} = 38 \cdot \frac{1}{3} = 12,7$$
 MM.

Отложив расчетные значения отрезков (aS_2) , (bS_3) , (dS_4) на соответствующих линиях плана ускорений, определяем модули ускорений центров масс:

$$a_{S_2} = (\pi S_2) \cdot \mu_a = 41 \cdot 25 = 1025 \quad \text{$M \cdot c^{-2}$};$$
$$a_{S_3} = (\pi S_3) \cdot \mu_a = 47 \cdot 25 = 1175 \quad \text{$M \cdot c^{-2}$};$$
$$a_{S_4} = (\pi S_4) \cdot \mu_a = 97 \cdot 25 = 2425 \quad \text{$M \cdot c^{-2}$}.$$

Направления ускорений центров масс \overline{a}_{S_2} , \overline{a}_{S_3} и \overline{a}_{S_4} определяют векторы $\overline{\pi S}_2$, $\overline{\pi S}_3$ и $\overline{\pi S}_4$ плана ускорений. Модули и направления касательных (тангенциальных) ускорений \overline{a}_{BA}^t , \overline{a}_{BC}^t и \overline{a}_{ED}^t определяют соответствующие векторы *b'b*, *b"b* и *e'e* плана ускорений:

$$\overline{a}_{BA}^{t} = (b'b) \cdot \mu_{a} = 32 \cdot 25 = 800 \quad \mathcal{M} \cdot c^{-2};$$

$$\bar{a}_{BC}^{t} = (b''b) \cdot \mu_{a} = 41 \cdot 25 = 1025 \quad M \cdot c^{-2};$$
$$\bar{a}_{ED}^{t} = (e'e) \cdot \mu_{a} = 35 \cdot 25 = 875 \quad M \cdot c^{-2},$$

последние в свою очередь позволяют определить направления и величины угловых ускорений подвижных звеньев механизма:

$$\varepsilon_{2} = \frac{a_{BA}^{t}}{l_{BA}} = \frac{800}{0,2} = 4000 \ c^{-2};$$

$$\varepsilon_{3} = \frac{a_{BC}^{t}}{l_{BC}} = \frac{1025}{0,2} = 5125 \ c^{-2};$$

$$\varepsilon_{4} = \frac{a_{ED}^{t}}{l_{ED}} = \frac{875}{0,35} = 2500 \ c^{-2}.$$

Направления угловых ускорений ε_2 , ε_3 , ε_4 показаны стрелками на плане механизма (Рисунок 2.3, а). Угловое ускорении ε_1 кривошипа равно нулю, так как ω_1 - const. Расчетные значения угловых ускорений звеньев и линейных ускорений точек, обозначенных на схеме механизма (Рисунок 2.3, а) заносим в таблицу 2.3.

Таблица 2.3 – Расчетные значения скоростей и ускорений
--

Кинематический параметр	Обозначение характерных точек и подвижных звеньев механизма											
	А	В	С	D	Е	S_2	S ₃	S_4	OA	AB	CD	DE
1. Линейные скорости точек, м·с ⁻¹	10	17	0	23,75	23,75	9,75	11,3	22,7	_	_	-	-
2. Угловые скорости звеньев, с ⁻¹	-	-	-	-	-	-	-	-	100	86,5	85,0	35,0
3. Линейные ускорения точек, м·с ⁻²	1000	1775	0	2485	2400	1025	1175	2425	-	-	-	-
4. Угловые ускорения звеньев, с ⁻²	-	-	-	-	-	-	-	-	0	4000	5125	2500